虽然细胞会因为多种原因发生凋亡,但通常是为了顾及整个生物体的利益。如果机体内细胞过多,多余细胞就必须被清除;不能发挥功能的衰老细胞也必须自我毁灭,给更年轻、更健康的细胞让出位置;当一个细胞从正常状态转变为癌细胞时,也可能被诱导自杀,因此细胞凋亡是人体内最重要的抗癌机制。由于细胞凋亡受一系列复杂细胞活动的调控,而这些细胞活动又受到多种蛋白信号的严格调控,因此细胞凋亡又叫做细胞程序化死亡。
然而,如果线粒体出现异常,在错误时间诱发细胞凋亡,则会带来一场灾难。发挥正常功能的过程中,线粒体会产生很多副产物:活性氧、氧离子及其他氧基分子片断。这些副产物极不稳定,受到它们的影响,线粒体可能泄漏一些信号蛋白,引发细胞调亡。换句话说,细胞中一个“零件”上的小瑕疵,也能在不经意间导致细胞死亡。偶然“牺牲”几个皮肤细胞也许没有太大影响,但如果记忆神经细胞死亡,就会造成不小的麻烦。
自噬体就是细胞中的保险装置,专门阻止上述“失误”的发生。一旦有细胞器受损,自噬体就会将它们吞掉,送至溶酶体,确保不会发生非正常细胞凋亡或坏死。
活性氧(reactive oxygen species)能与很多分子发生反应。在健康细胞中,活性氧的水平由抗氧化分子控制。然而,美国新泽西医学和牙科大学(University of Medicine and Dentistry of New Jersey)的金胜侃(Shengkan V. Jin)认为,当线粒体遭到破坏时,它们释放出的活性氧会比平时多10倍,远远超出解毒系统的处理水平。大量的活性氧可能导致癌症,因为进入细胞核后,它们会引发基因突变。在这种情况下,自噬作用会清除异常线粒体,恢复细胞内的正常秩序。美国罗格斯大学的艾琳·怀特(Eileen White)认为,自噬作用还能减轻癌细胞中的基因损伤,有助于预防新肿瘤的形成。
自噬的“正反面”
弄清了细胞凋亡的分子机制后,细胞生物学家不久又发现,细胞还能通过其他方式自杀。自噬作用立即成为首要关注对象。一个称呼的变化就反映了这段历史:细胞凋亡也叫I型细胞程序化死亡,而自噬作用有时被称为II型细胞程序化死亡(对于这种命名方式,科学界还存在着争议)。
自噬作用能通过两种方式导致细胞死亡:一是自噬体不断消化细胞质中的组分,直至细胞死亡;另一种则是直接激发细胞凋亡。为什么防止细胞非正常死亡的生理过程,有时又会导致细胞死亡?在这个令人困惑的问题背后,很可能藏着一个绝妙的答案。细胞凋亡与自噬作用联系紧密,两者间保持着微妙的平衡。如果细胞器的损坏程度过于严重,超出自噬作用的控制范围,细胞就不得不死亡,以维护整个生物体的利益。随后,细胞可能以程序化死亡的方式结束生命:自噬过程一直进行,直到细胞死亡;或者发出信号,直接引发细胞凋亡,并把自噬作用作为诱导细胞死亡的备用系统。目前,最受关注但又极具争议的两个研究领域是:自噬作用与细胞凋亡如何关联;自噬作用本身是否应该被看作细胞死亡的一种途径。
那么,自噬作用到底是保证细胞健康的途径,还是诱导细胞死亡的方式?科学家对自噬作用分子机理的研究,或许能解答这个问题。细胞中,一种叫做Beclin 1的信号蛋白,能诱发细胞的自噬作用,还能与抗凋亡蛋白Bcl-2结合。这两种蛋白质的结合或分开,决定着细胞的生死。其他科学家还发现,一个名为Atg5的蛋白对于自噬体的形成至关重要,它一旦进入线粒体,就能将一个自噬反应转变成凋亡反应。
任何事物都有两面性,自噬作用也不例外。很早以前,我们就注意到,癌细胞偶尔能激发自噬作用,达到“自救”的目的。通常,抗癌疗法会诱导恶性细胞自杀,但在治疗过程中,放疗和化疗会诱发超常水平的自噬作用,赋予癌细胞抵抗治疗作用的能力。
癌细胞还能利用自噬作用,解决养分不足的问题。一般来说,只有很少的养分能进入肿瘤内部,但养分缺乏会诱发自噬作用,让癌细胞分解生物大分子,延长自身寿命。科学家因此提出了一种抗癌策略:在放疗或化疗期间,抑制肿瘤内部的自噬作用。目前,用于这种疗法的药物已处于临床试验阶段。但值得注意的是,抑制自噬作用的同时,也可能使癌细胞内的基因突变增多,提高癌症复发的几率。要使这种疗法奏效,可能还需要对治疗策略做一些更精细的调整。
激发自噬作用
由于能清除细胞质中的残渣和失常细胞器,因此对于神经细胞这种长寿细胞,自噬作用显得尤为重要。如果自噬作用不能有效发挥,就可能引发阿尔茨海默病、帕金森病、亨廷顿病等神经退行性疾病,这3种疾病造成的大脑损坏都是不可修复的。阿尔茨海默病是最常见的痴呆症,仅仅在美国,就有450万患者。
人体衰老过程中,脂褐素(lipofuscin)会在大脑细胞中累积。这种褐色物质是脂类与蛋白质的混合物,就像老年人皮肤上出现的黄褐斑。美国内森·S·克莱恩精神病学研究所的拉尔夫·A·尼克森(Ralph A. Nixon)认为,脂褐素的累积其实是一种信号:衰老的大脑细胞已无法有效清除细胞内的异常或受损蛋白。在阿尔茨海默病患者的神经轴突上,一种黄色或褐色色素(蜡样质,ceroid)也会不断累积。在蜡样质集中的部位,轴突会变得肿大,而阿尔茨海默病特有的淀粉样斑块则会在肿大的轴突周围形成。
到目前为止,研究人员还没有完全弄清楚,蜡样质或它的前体物质是如何损害神经细胞的。但最新研究明确显示,在阿尔茨海默病发病早期发挥作用,促使淀粉样斑块形成的酶就存在于自噬体的外膜上。尼克森认为,在一定程度上,淀粉样斑块是由不完全的自噬作用造成的,正因为自噬作用不完全,神经细胞无法消化那些本应该被分解的物质(见下图)。利用电子显微镜,科学家拍摄到的阿尔茨海默病患者大脑中的斑块照片,证实了尼克森的观点:在最靠近斑块的那些神经细胞中,积累了大量“发育不良”的自噬体。这些斑块究竟是如何聚集在神经细胞周围的,科学家还没有定论。
从这些结果来看,只要是促进自噬作用的措施,似乎都可能缓解阿尔茨海默病。遗憾的是,目前还没有人知道,假如一种疗法不能保证自噬体与溶酶体融合,而仅仅是激发阿尔茨海默病患者体内的自噬作用,是否会对病人有好处。不过,这样的疗法可能对亨廷顿病患者有效。科学家发现,一种用于抑制移植器官发生免疫排斥的药物——雷帕霉素(rapamycin,也叫西罗莫司)也能诱发自噬作用。目前,研究人员正在测试,雷帕霉素能否有效激发自噬作用,去除亨廷顿病患者体内的一种有害蛋白质。加拿大华人网 http://www.sinoca.com/