还没上天的YF-77,其70吨的真空推力虽然已经比YF-75几乎高了一个数量级,但与国际主流液氢/液氧发动机相比,还是有巨大差距。比如,
日本H-IIA/B火箭上LE-7A的真空推力112吨;
欧洲阿丽亚娜5的火神2 (Vulcain2)的真空推力137吨;
苏联1980年代研制成功150吨级的RD-0120液氢液氧发动机;
2000年代研制成功200吨级的RD-10120液氢液氧发动机
美国1960年达研制百吨级的J2氢氧发动机
用于美国航天飞机的SSME氢氧发动机推力达到了213吨
2002年首发的美国德尔塔4火箭的RS-68的真空推力344吨
用于登陆火星的SLS火箭动力RS-25发动机,在2015年已经进行了500
秒和650秒长程点火试验,预计2018-2020年发射。
就连军迷们一直不屑一顾的阿三,也在这方面的实际应用上暂时领先中国。2014年1月5日,印度空间组织在安得拉邦航天中心成功发射GSLV-D5运载火箭,该火箭的第三级首次成功应用了印度国产氢氧火箭发动机CE-20,使印度成为美、俄、欧、日、中之后,世界第六个具备低温火箭发动机技术的国家。而且印度的氢氧发动机首次出手就很有档次,其推力达到了20吨,超过中国8吨级的YF-75一倍还多。
那么,人们不禁要问,除了70吨级的YF-77,中国还有没有更大的液氢/液氧发动机呢?
中国重型液氢/液氧发动机规划
根据中国航天科技集团《2011年度社会责任报告》,中国未来将发展重型液氢液氧发动机:即推力200吨级,真空推力为2460千牛、真空比冲为425秒的液体发动机。该型发动机预计2030年将用于长征9号重型运载火箭的二级级动力。
其技术难点如下:
1 大推力发动机高空点火与启动技术:需要合理分配发动起起动能量,安全可靠点火,平稳快速进入额定工况。如果点火和起动不当,会出现爆轰、压力峰甚至起动失败。需要进行理论与仿真计算、真空点火试验。
点评:液体发动机能够灵活多次点火起动,是对固体发动机的主要优势之一(有些小型脉冲式液体发动机甚至可以开关机25万次以上)。这有利于航天器推力-时间曲线的有效控制,对姿态和轨道调整是必须的,也是未来深空探测和载人航天技术的重要一环。但是液体发动机的点火时间比较长,有的甚至达到几秒钟。氢氧低温发动机起动时,还要先用液氢降温预冷,达到工作状态后才能真正点火。点火之后,在零点几秒内,发动机从0转速加速到每秒几万转;燃烧组件从环境温度达到 3000-4000℃,起动过程的每个指令都必须精确到百分之几秒,甚至千分之几秒。而且非自燃推进剂还一个单独的点火系统,比如不容易点燃却容易爆炸的液氧/甲烷发动机,点火系统堪称其核心技术。
2 发动机结构动力学优化技术:确保发动机结构频率和动态刚度要求,且布局合理、结构紧凑、维护性好。需要数字仿真技术并设置高压液路补偿措施。
点评:200吨级发动机的结构,不是70吨级的简单放大。推进剂和燃料的混合比调节装置、补偿液路的管路布局等,大尺寸发动机振动控制和应力控制,都为结构力学优化设计带来了不小的难度。
3 大热流、高效、稳定燃烧推力室技术:需采用多种综合技术措施抑制高频不稳定燃烧。需在身部与喷管上段再生冷却、喷管下段引入燃气冷却和辐射冷却相结合的方案,保证发动机可靠工作。
点评:推力室由推进剂喷嘴、燃烧室、喷管组件等组成,火箭推进剂通过喷注器注入燃烧室,经雾化、蒸发、混合和燃烧等过程生成燃烧产物,以高速 2500-5000米/秒的高速从喷管中冲出而产生推力。高频横向不稳定燃烧(和低频纵向不稳定燃烧)是推力室正常工况的大敌,控制难度较大。而推力室中的燃烧室,内压力可达20MPa,温度为3000-4000℃。因此有效冷却是推力室持续工作的要求。这两点是推力室技术的要害。
4 超大尺寸、高效、轻质喷管技术:大面积比喷管延伸段出口直径大,是世界上尺寸最大的氢氧发动机喷管(原文如此)。采用分段设计和制造技术,分为轻质合金再生冷却和超大尺寸单壁涡轮排气冷却两段。
点评:这样的分段设计提高了冷却效率和降低了生产加工难度。但对喷管的应力控制和结构强度可能会产生不利的影响。如果分段的材料性质有差异,更需要注意温度变化带来的影响。
5 低温、高效高抗汽蚀涡轮泵技术:泵入口压力低、效率高、转速高、温度低。采用高抗汽蚀诱导轮和新型低温、低泄漏组合式动密封技术,提高涡轮泵性能。
点评:涡轮泵由气体涡轮、燃料泵和氧化剂泵等组成。由涡轮带动泵,将来自贮箱的推进剂的压力由不足1兆帕提高到20兆帕,然后再送入发动机推力室。高性能涡轮泵可以将海水从海平面打到5000米高。据说YF-77就曾因为涡轮泵的质量问题影响了研制进度。高性能涡轮泵是液体发动机研制的核心技术之一。
6 制造与试验技术:大尺寸银锆铜饼材料与成型、高DN值混合陶瓷球轴承制造、高强度涡轮盘、大尺寸复杂结构钛合金和高温合金精密铸造、增强型钛合金异型材成型、高强度大尺寸特征合金薄壁管等新材料新工艺技术亟需攻关。需要发展高空模拟实验技术、试验台基础设施和火焰导流防护技术。
点评:材料、设备、工艺、试验……道道难关,层出不穷,这就是考验中国航天工业基础功力的型号,其意义非同一般。
看看这些不明觉厉的高大上技术难题,回过头来,客观地说,如果应用YF-77的长征5号以及后续火箭发射顺利,将证明中国已经跨过了大型液氢/液氧发动机研制的初级门槛。虽然前路遥远,但可以为14年后的200吨级氢氧机首发打下一定的技术基础。反之,如果遇到发射问题,或者即使发射成功但技术状态不稳定,则氢氧发动机的这块短板,就将还是压在中国航天人心头的一座大山。
2016年下半年,长征5号的首发,让我们一起凝神细看YF-77氢氧发动机的航天首秀吧。
所有资料来自于互联网公开报道和公开出版物,如:
《中国液体火箭发动机》
《俄罗斯液体火箭发动机》
《液体火箭发动机技术发展》
《重型液体火箭发动机研究》
《液氧/煤油发动机》
《液氧/甲烷发动机》
加拿大华人网 http://www.sinoca.com/